SEVEN MILE ISLAND INNOVATION LABORATORY

Lenore P Tedesco – The Wetlands Institute

Monica A. Chasten - Philadelphia District of USACE

Ginger Kopkash - NJDEP

Lisa Ferguson - The Wetlands Institute

Dave Fanz – NJDEP (Retired)

- ▶ Sea level rise rates now exceed most marsh accretion rates in NJ
- Sediment is the currency of these systems and keeping sediment in the systems has become crucial to the long-term fate of shallow coastal ecosystems

- A Proving Ground Using Natural and Nature-Based Features to Provide Ecological Uplift and Enhanced Resilience for Ecosystems and Coastal Communities
- Test Bed to Advance and Improve Dredging and Marsh Restoration Techniques in Coastal New Jersey
- Advancing the Progression from Sediment Removal (25%) to 60% (post-Sandy) to a Goal of 100% Beneficial Use of Clean Channel Sediments in Coastal New Jersey
- Using an Adaptive Management and Systems Approach to Restoration and Creation Retaining Sediment in Systems and Moving Beyond Pilot Projects to Solutions
- Based on an International Concept Pioneered by the Dutch

SEVEN MILE ISLAND INNOVATION LABORATORY

- Critical shoals in NJIWW limit vessel access and are high priority nationally for the USCG
 - ▶ NJIWW ranks 3rd on national priorities for USCG
 - Both sand and mud shoals
- Back bay marsh-dominated system with shallow bays, sounds and tidal inlets that is a predominant setting throughout the Atlantic and Gulf Coast
- History of in-water creation and beneficial use sites and projects creating opportunities for longitudinal analysis and a commitment to long term monitoring
- Philadelphia District as an EWN Proving Ground partnered with with centrally located field research station with extensive historic records

WHY SMIIL AND WHY NOWS

A SEDIMENT PROGRESSION: FROM CONFINEMENT TO IN-WATER CREATION

SEVEN MILE ISLAND INNOVATION LAB SYSTEM

- Confined
 Disposal Facility
 (CDF)
- Sandy Elevated Nesting Habitat (ENH)
- Thin LayerPlacement(TLP)
- Marsh Enhancement (ME)
- Prior Placement Sites (PP)
- Habitat Enhancement (HE)

- NWFW
 Hurricane
 Sandy Coastal
 Resilience
 Grant
- Pilot Testing Beneficial Use Concepts
- Pool Filling and Thin Layer Placement
 - ► Winter 2014 6,000 cy
 - Winter 2015 49,000 cy

AVALON MARSH ENHANCEMENT PRÓJECT

NJIWW IN SOUTHERN SEVEN MILE ISLAND INNOVATION LAB

Ring Island Beneficial Use Projects

- Elevated Nesting Habitat Maintenance
 - March 2018 1,200 cy
 - ▶ 120' of Channel
 - Reestablish Berm Crest at 6'

RING ISLAND ELEVATED NESTING HABITAT REPETITIVE PLACEMENT

NESTING RESPONSE TO HABITAT CREATION

■ BLSK ■ CLRA ■ COTE ■ GBBG ■ LETE ■ SESP ■ WILL

HABITAT CLUSTERS: FROM PILOTS TO SYSTEM SOLUTIONS

- ▶ Ecologic Value
 - Creates Network of Sites at Different Stages of Succession
 - Separates Populations for Resiliency
 - Mimics Historic Distribution of Colonial Nesting Birds
- Dredging Value
 - Provides Opportunities for Repetitive Placement
 - Creates More Volume Utilization
 - Allows for Staggered Placement

Ring Island A (2014; 2018) Great Flats (2018) Ring Island B (Future) Stone Harbor Point

GREAT FLATS NESTING HABITAT

GREAT FLATS HISTORICAL IMAGERY

GREAT FLATS NESTING HABITAT

- Created 1-2 acre area of upland and high marsh habitat on former material placement site
- Managed muddy runoff to be thin layer placement through unconfined placement followed by berm building to achieve elevation targets
- Wind transport of fine sand to surrounding areas augments marsh build up rates providing added benefit
- Future refurbishment allows for ongoing channel maintenance

NORTHERN SMIIL USACE PRIOR PLACEMENT AREAS

- Prior placement sites created important wading bird habitat
 - Nesting areas account for nesting for nearly 1/3 of wading birds in State of NJ
- Habitat degrading with elevation loss
- Declining nesting success rates and decrease in species diversity

ISLAND ELEVATION ENHANCEMENT

STURGEON ISLAND

Flooding Frequency for Stone Harbor

- Ground elevation at nesting sites ranged from 2.2'-2.5' NAVD88
- ▶ Nesting height ranged from 2.7' to 3.5'
- Favored Iva, Phrag and mixed Phrag areas (yellow)
 - ▶ Iva fructescens 2.18' +/- 0.67
 - ► Mix 2.26' +/- 0.61
 - ▶ Phragmites 2.38' +/- 0.57

Green <2.1' NAVD88 Yellow 2.1 - 3.0' Orange >3.0'

Flooding frequency for Stone Harbor based on 2003 – 2018. Calculated by Remington & Vernick Engineers.

STURGEON ISLAND CONCEPT: ISLAND ELEVATION ENHANCEMENT AND DYNAMIC BERM CREATION (2020)

- Navigation Goal
 - Maintain safe navigation by clearing NJIWW shoals between markers 386 AND 397
- Ecosystem Goals
 - Enhance habitat for important wading bird colony
 - Build nesting platform to expand suitable nesting habitat
 - Create erosion barrier to decrease wave energy and supply sediment to island
 - Create sandy terrapin nesting habitat
- Placement Approach Goals
 - Test methods of unconfined sediment placement and material transfer
 - Develop tools to allow sand and mud placement separation

Sturgeon Island

- Phase IA Dynamic berm creation with sandier sediments for edge erosion protection, terrapin nesting habitat, wrack barrier and elevation maintenance
- Phase IB Unconfined sediment placement to elevate marsh platform to 1' above MHHW (3.5' NAVD88)
- Phase II Elevated nesting habitat enhancement and creation to supratidal elevations suitable for Iva

- (A) In water
 placement
 created important
 intertidal foraging
 flats for shorebirds
 and wading birds
- (B)Unconfined on marsh sediment placement created elevated nesting habitat for wading birds

GULL ISLAND FLATS EXPANSION

- ▶ Unconfined in water placement to enhance intertidal flats
- Reintroduction of SAV missing from SMIIL since 1930's
- Large volume for channel clearing dredging
- Reoccupy prior placement areas

GULL ISLAND FLATS EXPANSION

SEVEN MILE ISLAND INNOVATION LABORATORY

Lenore P. Tedesco Itedesco@wetlandsinstitute.org Monica A. Chasten monica.a.chasten@usace.army.mil

