Advancing Science and Practice at the Seven Mile Island Innovation Laboratory

Lenore P. Tedesco, PhD Executive Director, The Wetlands Institute Itedesco@wetlandsinstitute.org

EWN

- A Proving Ground Using Natural and Nature-Based Features to Provide Ecological Uplift and Enhanced Resilience for Ecosystems and Coastal Communities
- Test Bed to Advance and Improve Dredging Techniques and Marsh Restoration and Coastal Feature Creation Techniques in Coastal New Jersey
- Using an Adaptive Management and Systems Approach and Moving Forward From Pilots to Solutions
- Based on an International Concept Pioneered by the Dutch
- Back Bay Marsh Dominated System with Shallow Bays, Sounds and Tidal Inlets

SEVEN MILE ISLAND INNOVATION LABORATORY

- Encompassing 24 mi², and 15,000 acres of Back Bay Tidal Marshes, Shallow Bays, and Inlets
- Bisected by the NJ Intracoastal Waterway
- Part of the Cape May Wetlands Wildlife Management Area
- Home of The Wetlands Institute

- Federal Beach Fill and
- Confined Disposal Facility (CDF)
- Prior Placement Sites (PP)
- Elevated Nesting Habitat (ENH)
- Thin Layer Placement (TLP)
- Marsh Enhancement (ME)

SMIIL 2020/2021Projects

- Elevation Enhancement and Nesting Habitat
- Sandy Marsh Edge Protection
 - Elevation Enhancement and Nesting Habitat
- \bigstar Mud Berm Creation and Tidal Flat Enhancement

Existing SMIIL Projects

★ Avalon Marsh Enhancement
☆ Ring Island Nesting Habitat (not shown)
☆ Great Flats Nesting Habitat (not shown)

NWFW Hurricane Sandy Coastal Resilience Grant

- Early Pilot Testing Pool Filling and Thin Layer Placement
 - ► Winter 2014 6,000 cy; Winter 2015 49,000 cy
 - Average elevation change ranged between 0.9' – 1.2' but as much as 3' in some areas
 - On average, sites lost ½ elevation gain by 2017, 2 years post-placement
 - Overall are close to ecological target elevations

AVALON MARSH ENHANCEMENT PROJECT

NESTING HABITAT CLUSTERS: MIMICKING NATURE AND ACHIEVING A SYSTEM SOLUTION

Ecologic Value

- Creates Network of Nesting Sites at Different Stages of Succession
- Separates Populations for Resiliency
- Mimics Historic Distribution of Colonial Nesting Birds
- Dredging Value
 - Provides for Repetitive Placement
 - Creates More Volume Utilization
 - Allows for Staggered Placement

Ring Island A (2014; 2018; 2021) Great Flats (2018) Ring Island B (Future?) Stone Harbor Point

- Elevated Nesting Habitat Creation
 - ► Fall 2014 1 acre 6000 cy
- Sandy Thin Layer Placement
 - ▶ 2 sites 0.9 acre 1000 cy

- Elevated Nesting Habitat Maintenance
 - March 2018 1,200 cy
 - ► 120' of Channel Cleared
 - Reestablish Berm Crest at 6'
 - Created Containment Berm with Onsite Sand

RING ISLAND ELEVATED NESTING HABITAT REPETITIVE PLACEMENT

How did elevation affect nesting bird use of the site?

5.0 - 7.0 modeled from LiDAR data, provided by USACE, modeled by Princeton Hydro.

Ferguson, et al, 2019

- ▶ Placed 6,000 yd³ on 1 acre habitat
- Free Pump until Material to Create Containment
- ► Target Ecological Elevation 5.5'
 - Placement to 6.5' for Settling and Anticipated Wind Transport
 - ▶ 95%+ fine sand
- Had Thin Layer Placement of Mud on Surrounding Marsh Platform

Marsh platform had 0.1 -0.4' elevation gain(mud)

Nesting Habitat had 3-4' elevation gain (sand)

© 2018 Google

NORTHERN SMIIL USACE PRIOR PLACEMENT AREAS

- Prior Placement Sites Created Important Wading Bird Habitat
 - Nesting Areas Account for Nesting for Nearly 1/3 of Wading Birds in State of NJ
- Habitat Degrading with Elevation Loss

Ecological Goals

- Unconfined on Marsh Sediment Placement to Create Elevated Nesting Habitat for Wading Birds
- Tidal Creek Outflow to Expand Intertidal Flats
- In Water Placement to Create Sandy Marsh Edge Protection Feature and Diamondback Terrapin /Horseshoe Crab Nesting Areas

Dredge Methods

- Direct placement to build marsh elevation
- Distribution Pipe to Separate Sand and Mud
- Marsh Edge Placement of Sandy and In water Placement of Mud

ISLAND ELEVATION ENHANCEMENT AND SANDY MARSH EDGE PROTECTION

- Ecological Goals
 - Increase Elevation to High Marsh (> 3.5' NAVD88)
 - Target Seaside Sparrow and Wading Bird Nesting Elevation
 - Replace Lost High Marsh Habitat
 - Increase Marsh Platform Elevation to Spartina Benchmark Elevations
 - Build Subtidal Up to Intertidal Mud Berm
 - Shallow Subtidal Area to above MLLW to Enhance Benthic Macroalgae
- Dredge Methods
 - Direct placement to build marsh elevation
 - Y-valve to direct sand vs mud
 - In water placement of mud

ISLAND ELEVATION ENHANCEMENT & MUD BERM EMPLACEMENT

ADVANCING SCIENCE AND PRACTICE AT THE SEVEN MILE ISLAND INNOVATION LABORATORY

- ► For more information:
- ► Lenore Tedesco Itedesco@wetlandsinstitute.org
- Monica Chasten -Monica.A.Chasten@usace.army.mil
- ► Wetlandsinstitute.org/SMIL
- ▶ ewn.el.erdc.dren.mil/

ADVANCING SCIENCE AND PRACTICE AT THE SEVEN MILE ISLAND INNOVATION LABORATORY

Pursuit of Engineering With Nature_® Strategies in the New Jersey Back Bays

Lenore P. Tedesco, PhD

Executive Director, The Wetlands Institute Itedesco@wetlandsinstitute.org

Monica Chasten

Project Manager, USACE Monica.A.Chasten@usace.arm.mil