

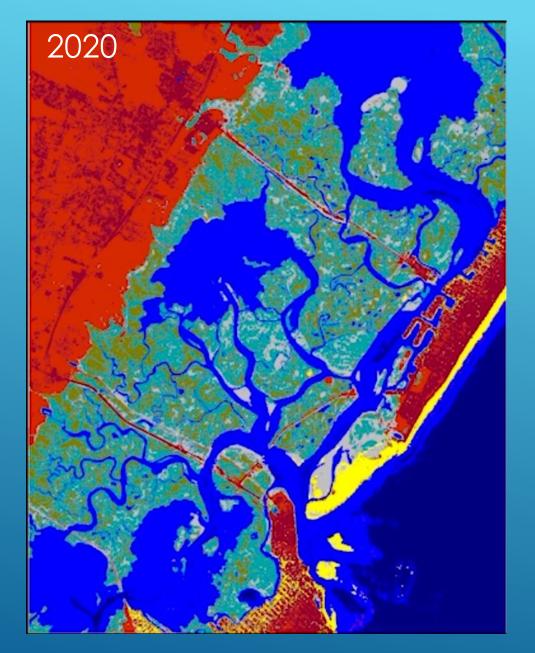
Beneficially Using Dredged Sediment to Enhance Marshes, Build Resiliency and Restore Habitats in New Jersey's Back Bays/

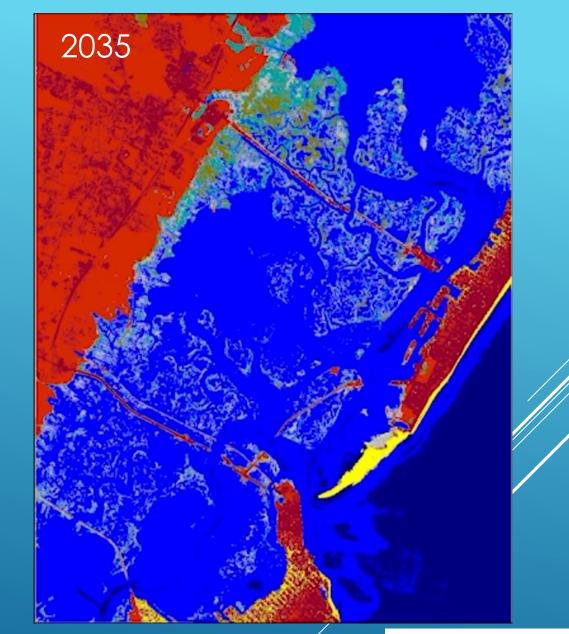
Lenore P. Tedesco, The Wetlands Institute Monica Chasten, USACE – Philadelphia District Kelsey Fall, David Perkey, USACE – ERDC Lisa Ferguson, Sam Collins, The Wetlands Institute Christina Davis, NJ Fish and Wildlife

US Army Corps of Engineers₀

- A Proving Ground Using Natural and Nature-Based Features to Provide Ecological Uplift and Enhanced Resilience for Ecosystems and Coastal Communities
- A Test Bed to Advance and Improve Dredging Techniques and Marsh Restoration and Coastal Feature Creation Techniques in Coastal New Jersey
- Using a Landscape Approach and Adaptive Management to Move From Pilot Projects to Ecosystem Solutions
- Based on an International Concept Pioneered by the Dutch
- 24 sq mi Back Bay Marsh Dominated System with Shallow Bays, Sounds and Tidal Inlets Bisected by the NJ Intracoastal Waterway
- ► 50+ Member Working Group for Knowledge Sharing
- More than 30 Scientists Working in SMIL

SEVEN MILE ISLAND INNOVATION LABORATORY





HIGH TIDE FLOODING (MHW SLAMM) AND COASTAL RESILIENCE

SMIL BENEFICIAL USE PROJECTS

Sediment Type Mixed Fine Sand and Mud Maintenance Dredging NJIWW Hydraulic Dredging and Transport

> Sediment Type: Fine to Medium Sand Maintenance Dredging NJIWW Hydraulic Dredging and Transport

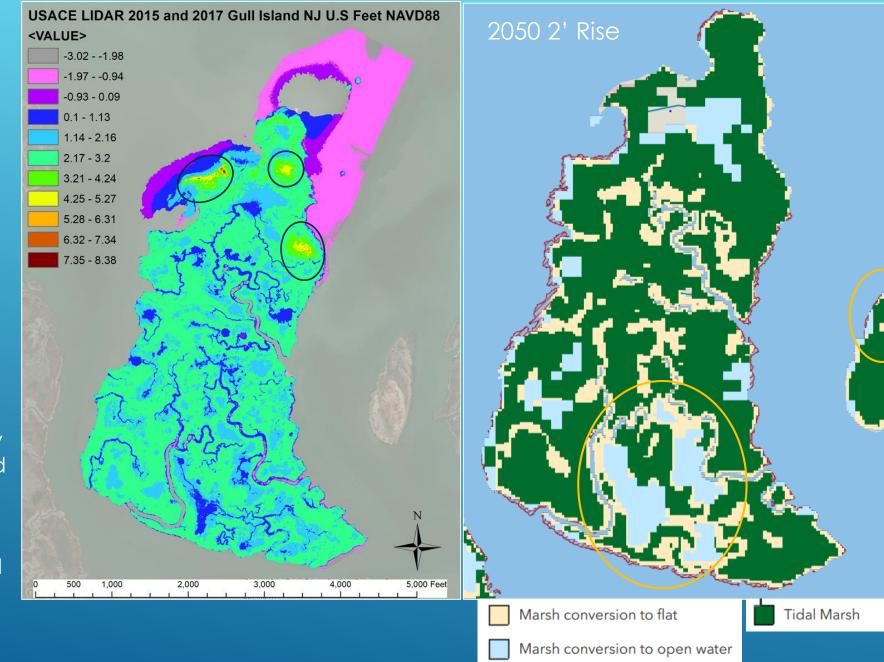
Nummy Island

reford Inlet

Ring Island Elevated Nesting Habitat & Thin Layer Placement

Great Flats Elevated Nesting Habitat

Townsends Inle

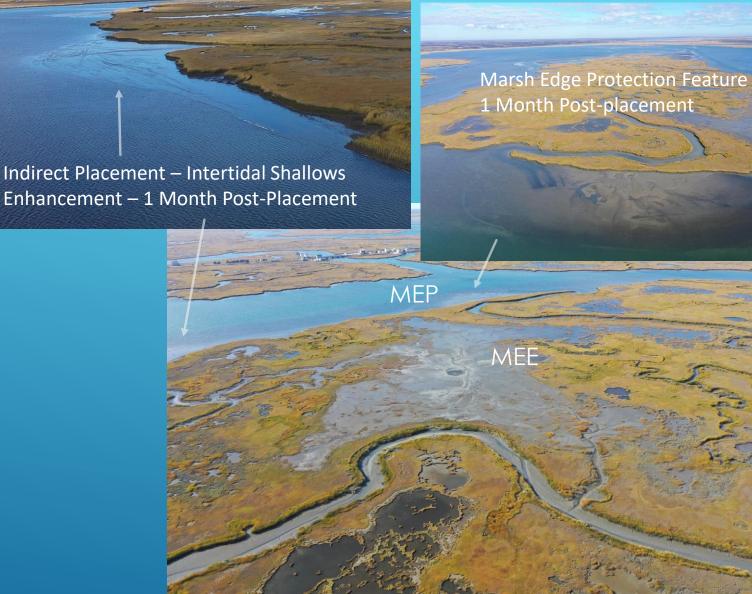


- Sturgeon and Gull Islands are low lying marsh islands that are drowning
- Historic dredge material placement sites created important wading bird habitat
 - Nesting areas account for nesting for 35% of all colonial wading birds in NJ
- Habitat degrading with elevation loss
- Island drowning destabilizing marshes

ECOLOGICAL CONDITION ASSESSMENTS & HABITAT NEEDS

- ► Gull Island
 - Large portion of tidal marsh projected to convert to mud flats and open water
 - Southern margin experiencing marsh edge erosion and risks of breaching
 - Pre-placement almost all of Gull Island flooded daily with vast areas of interior intertidal flats and open water area
 - High marsh areas are now restricted to prior dredged material placement sites
- Sturgeon Island
 - Northern portions of island at risk of conversion to flats and experiencing marsh edge erosion

NJ Floodmapper


- Ecologic Goals
 - Raise Elevations of Marsh Platforms Across a Gradient of Elevations – Gull and Sturgeon Islands (MEE)
 - Target Wading Bird Nesting Elevations Transitional Upland Shrub Habitat (>3.5' NAVD88)
 - Target High Marsh Elevations for Salt Marsh Sparrow (2.7' – 3.1' NAVD88)
 - Target Low Marsh Elevation for Fish Habitat (2.0 2.7' NAVD88) and Shorebird and Wader Foraging
 - Create Marsh Edge Protection Zone Gull and Sturgeon Islands (MEP)
 - More Natural Marsh Edge Slope and Wave Energy Buffer
 - Strategic Placement for Marsh Nourishment
 - Intertidal Shoal to Marsh Edge Elevation (2.0'NAVD88)
 - Enhance Intertidal and Subtidal Shallows Gull and Sturgeon Islands (ISS)
 - Target Elevations to MLLW Where Macroalgal Flats Transition from Sparse to Densely Vegetated (-1.0 MLLW – 0' MLLW)

GULL AND STURGEON ISLAND ECOLOGICAL GOALS

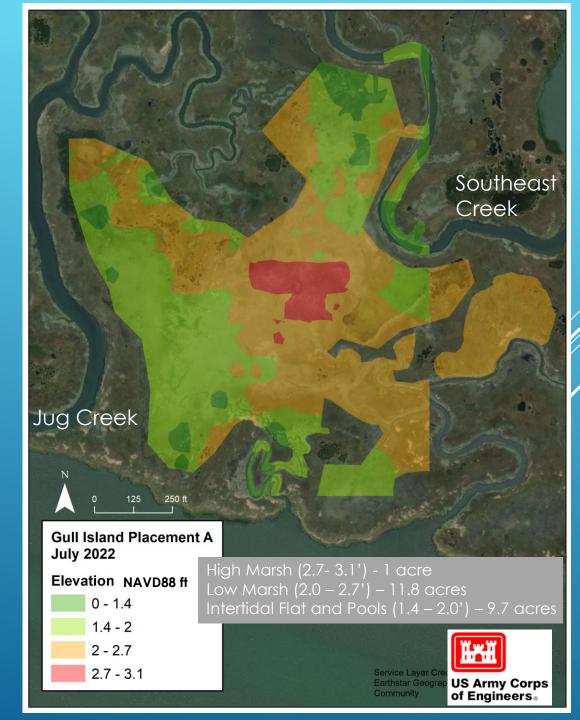
- Marsh Elevation Enhancement (MEE)
 - Unconfined placement of 40,000 cubic yards
 of mixed fine sand and mud
 - ~22 acres of elevation lift
 - 3.9' NAVD88 1.8' NAVD88
 - Excellent grass recovery
 - Migratory shorebird and sparrow use
- Marsh Edge Protection (MEP)
 - Built to marsh edge (2.0' NAVD88) down to MLLW
 - Placed ~9000 cy and gained 1 2.5' of elevation
 - 50% reduction in volume (~4700 cy) after 16 months and 1-1.5' of elevation gain
 - ~Measured wave height and energy reduction along marsh edge during May Nor'easter (Perkey et al.)
- Enhanced Intertidal Shallows (ISS)
 - Placed ~8700 cy and gained 1-2.5' of elevation gain and shallowed up to MLLW
 - Reduced to ~4100 cy after 16 months and 1-1.5' of elevation gain so ~50% reduction in volume

OUTCOMES GULL ISLAND PROJECTS

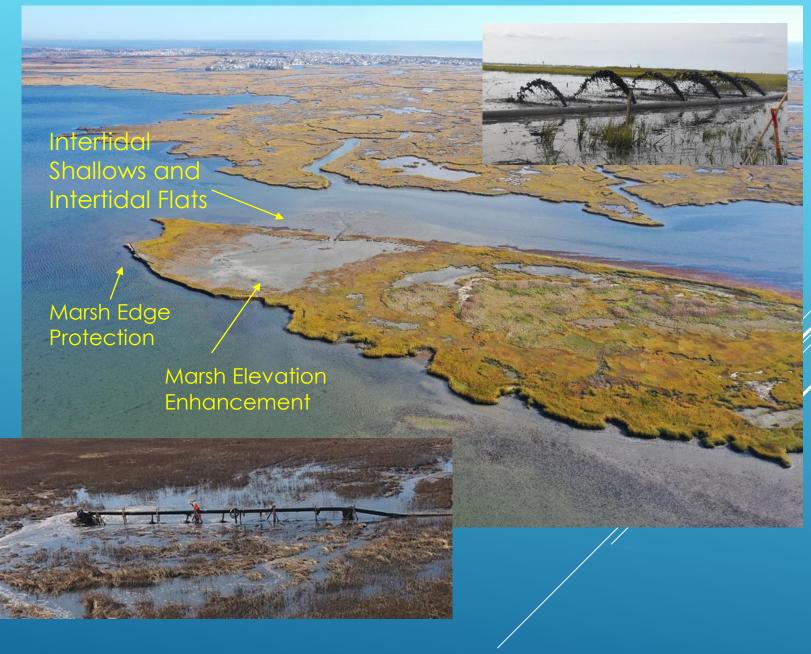
September 2020

1 month Post Placement (2020-11-10)

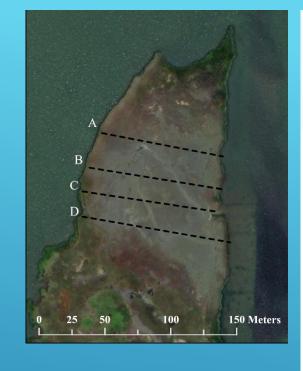
2 Years Post Placement (2022-08-19)



and a get the application

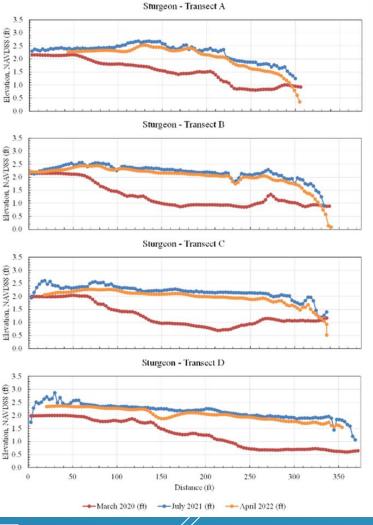

- Below target elevations for transitional wading bird habitat and only small area of high marsh
 - Acoustic monitoring detecting both Salt Marsh and Seaside Sparrows foraging on site
- Effectively created low marsh habitat and shallowed interior intertidal flats and pools
 - Avian surveys documenting more than 25 species utilizing placement area for foraging including several surveys with 500-1000 Semipalmated Sandpipers
- Vegetation recolonization and expansion proceeding well at 2 year post-placement timeframe
- Ecological benefits progressing along site evolutionary trajectory
- Return for additional uplift?

GULL ISLAND OUTCOMES 2 YEARS POST PLACEMENT



- Placed in Two Phases in 2020
 - ▶ March 2020
 - ▶ 4,200 cubic yards
 - ► September 2020
 - ▶ 15,000 cubic yards
 - Mixed fine sand and mud
- Marsh Elevation Enhancement (MEE)
 - ▶ 3.5 acres of enhancement
 - ▶ 3.0' NAVD88 grading down to 1.9'
- Marsh Edge Protection (MEP)
 - Placed small sand ridge along toe of erosional slope
- Enhanced Intertidal Shallows (ISS)
 - Shallowed above MLLW along eastern island to extend flats northward
- Returned in Fall 2022 for Phase 3

STURGEON ISLAND PLACEMENTS

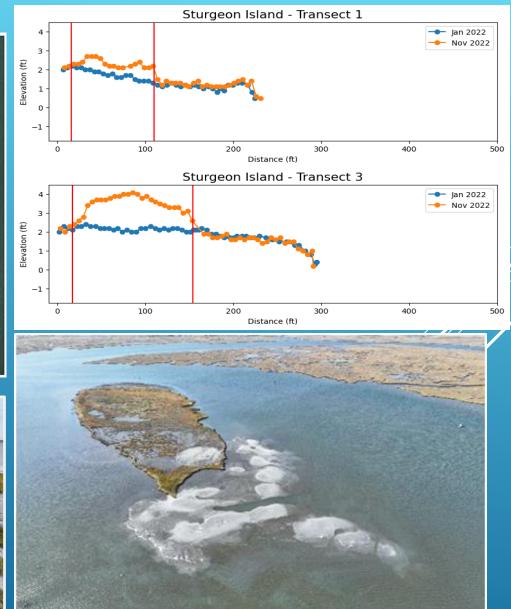

2020 UAV Orthomosaic

2022 UAV Orthomosaic

 Vegetation recolonization is rapidly occurring naturally via seed bank in year 2

Courtesy of Harris et al.

STURGEON ISLAND PHASE 3 – FALL 2022


- Placed 24,000 CY of fine sand to create sandy marsh edge protection features
 - Intercepting wave energy
- Used containment to elevate 0.4 acre for elevated bird nesting habitat
 - Placed more than 3' of material
 - ► Built to 4.0' NAVD88
- Employed Y-value to switch between containment and subtidal features
 - Maintain dredging efficiency
 - Allow time for contained area to dewater
 - Slow and manage flow volumes and velocities

Don't over engineer projects

- Sediment containment is challenging, expensive, and often creates its own negative feedback loops
- Unconfined placement allows material to spread over wide areas and for maintenance/development of tidal flushing
- Building elevation may require multiple lifts or partial containment
- BUDM projects are water management projects (Flow velocities from 24" dredge pipe are 22,000 gals/min and 80% water)
- Dredging efficiency and effectiveness of placements enhanced by:
 - Using Y-valves and other tools to allow placement in multiple sites easily and switching between sites/location s at a site
 - Can help control flow velocities and provide resting and settling times for placed material
 - Adaptive management during dredging and placement is very difficult
- Understanding progress towards construction/ecological goals during placement difficult
- Vegetation recovery takes ~two growing seasons to initiate
 - Recovery has been almost entirely by new seeding from the seedbank and below MHHW
 - Planting should be delayed for at least two growing seasons if needed at all
 - Balance placing in thin layers to preserve existing vegetation vs thicker placement for more ecological uplift
- Structure project goals to include habitat and species benefits during site evolution
- Consider role of monitoring and keep focused on adaptive management or to advance practices

LESSONS LEARNED AND SOME GUIDING THOUGHTS

ADVANCING SCIENCE AND PRACTICE AT THE SEVEN MILE ISLAND INNOVATION LABORATORY

- For more information:
- Lenore Tedesco Itedesco@wetlandsinstitute.org
- Monica Chasten -Monica.A.Chasten@usace.army.mil
- Wetlandsinstitute.org/SMIL

- Beardsley, Welp, Harris, McFall, Tyler, and Savant (2022): Sediment Distribution Pipe: Modeling Tool and field Application. WEDA Journal of Dredging, v. 20 (1) 16-37.
- Chasten, Goldberg, Pasquale, Piercy, Welp, and Golden (2016): Recent Experience with Channel Dredging and Placement to Restore Wetlands In New Jersey, WODCON XXI PROCEEDINGS.
- Collins, Ferguson, Morey, and Tedesco (2021): Cape May Wetlands Wildlife Management Area Habitat Restoration Monitoring and Evaluation, https://wetlandsinstitute.org/wp-content/uploads/2022/11/FG19-057_TWI_2019-2021_FINAL.pdf
- Ecoshape (2018): Living Lab for MUD Brochure, www.ecoshape.org.
- Fall, Perkey, Tyler, and Welp (2021): Field Measurement and Monitoring of Hydrodynamic and Suspended Sediment with the Seven Mile Innovation Laboratory, New Jersey, ERDC/CHL TR-21-9, https://permanent.fdlp.gov/gpo185925/ERDC-CHLTR-21-9(1).pdf
- Fall, Perkey, Tedesco and Chasten (2022): Impact of Strategic, Unconfined, Dredged Material Placement on Turbidity Within a Shallow Back Bay System: observations from Seven Mile Island Innovation Laboratory, NJ, WEDA Journal of Dredging, v. 20 (1) 38-49.
- Rochette, Chasten, Tedesco, and Kopkash (2019): Seven Mile Island Innovation Laboratory, Overview and Purpose Fact Sheet www.nap.usace.army.mil.
- Sea Level Rise in New Jersey: Projections and Impacts New Jersey Climate Change Resource Center," https://njclimateresourcecenter.rutgers.edu/climate_change_101/sea-level-rise-in-new-jersey-projections-and-impacts/.
- Tedesco, Chasten, Ferguson, Collins, and Davis (2021): Using Dredged Sediments to Uplift Marshes, Build Subtidal Shallows and Provide Marsh Edge Protection in the Seven Mile Island Innovation Lab, Delaware Estuary Science and Environmental Summit, https://delawareestuary.org/delaware-estuary-science-and-environmental-summit/

RELEVANT PUBLICATIONS